Reliability Analysis of Communication Networks Mathematical models and algorithms

Peter Tittmann

Hochschule Mittweida

May 2007

Peter Tittmann (Hochschule Mittweida)

Network Reliability

2007-05-30 1 / 64

Models for Communication Networks

Communication network	Mathematical model
Network topology	(un-) directed graph
Server	
Switch	Vertex
Base station	
Fiber optical transmission line	
Transmission line (copper)	Edge (arc)
Wireless channel	
Server failure probability	Weights of
	vertices
Link availability	
Line length (costs)	Edge weights
Transfer rate	
User terminal	Terminal vertex
PoP	

< □ > < ---->

• What is the probability that a certain vertex is reachable from another given vertex?

- What is the probability that a certain vertex is reachable from another given vertex?
- What is the probability of network overload?

- What is the probability that a certain vertex is reachable from another given vertex?
- What is the probability of network overload?
- Which mean transmission rate can be realized?

- What is the probability that a certain vertex is reachable from another given vertex?
- What is the probability of network overload?
- Which mean transmission rate can be realized?
- Where are the weak points of the network (e.g. w.r.t. reliability or security)?

- What is the probability that a certain vertex is reachable from another given vertex?
- What is the probability of network overload?
- Which mean transmission rate can be realized?
- Where are the weak points of the network (e.g. w.r.t. reliability or security)?
- Is a spread of failure within the network possible? How?

- What is the probability that a certain vertex is reachable from another given vertex?
- What is the probability of network overload?
- Which mean transmission rate can be realized?
- Where are the weak points of the network (e.g. w.r.t. reliability or security)?
- Is a spread of failure within the network possible? How?
- What is the mean (average) packet delay?

- What is the probability that a certain vertex is reachable from another given vertex?
- What is the probability of network overload?
- Which mean transmission rate can be realized?
- Where are the weak points of the network (e.g. w.r.t. reliability or security)?
- Is a spread of failure within the network possible? How?
- What is the mean (average) packet delay?
- What is the probability of packet loss?

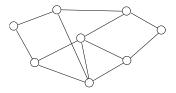
- What is the probability that a certain vertex is reachable from another given vertex?
- What is the probability of network overload?
- Which mean transmission rate can be realized?
- Where are the weak points of the network (e.g. w.r.t. reliability or security)?
- Is a spread of failure within the network possible? How?
- What is the mean (average) packet delay?
- What is the probability of packet loss?
- How is traffic load distributed over the network?

- Network technology, used protocol (IP, ATM, SS7, GSM)
- Routing, redundancy properties
- Service under consideration
- Supply of data
- Type of failure

Mathematical Model

Network Structure – Graphs

Directed or undirected graph G = (V, E)



 p_e ... availability of edge $e \in E$ All edges are assumed to fail independently.

- ${\mathcal W}$ set of paths
- \mathcal{C} set of cuts

 $R(G) = P({G \text{ is connected}})$

< ∃ > <

 $R(G) = P({G \text{ is connected}})$

• K-terminal probability R(G, K), $|K| \ge 2$

< ∃ > <

 $R(G) = P({G \text{ is connected}})$

- K-terminal probability R(G, K), $|K| \ge 2$
- The *residual connectedness probability*: *G* is considered operating if and only if at least one vertex is in operating state **and** all operating vertices of *G* belong to one component.

 $R(G) = P(\{G \text{ is connected}\})$

- K-terminal probability R(G, K), $|K| \ge 2$
- The *residual connectedness probability*: *G* is considered operating if and only if at least one vertex is in operating state **and** all operating vertices of *G* belong to one component.
- Probability of a given data transfer between two vertices.

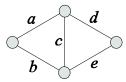
 $R(G) = P(\{G \text{ is connected}\})$

- K-terminal probability R(G, K), $|K| \ge 2$
- The *residual connectedness probability*: *G* is considered operating if and only if at least one vertex is in operating state **and** all operating vertices of *G* belong to one component.
- Probability of a given data transfer between two vertices.
- Resilience: Expectation for the number of vertex pairs that are connected by operating paths.

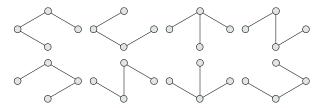
 $R(G) = P(\{G \text{ is connected}\})$

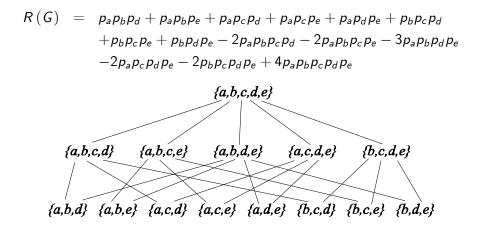
- K-terminal probability R(G, K), $|K| \ge 2$
- The *residual connectedness probability*: *G* is considered operating if and only if at least one vertex is in operating state **and** all operating vertices of *G* belong to one component.
- Probability of a given data transfer between two vertices.
- Resilience: Expectation for the number of vertex pairs that are connected by operating paths.
- Importance measures

Example

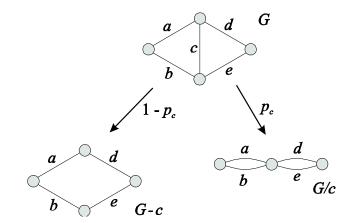


Sets of minimum paths – spanning trees $\mathcal{W} = \{\{a, b, d\}, \{a, b, e\}, \{a, c, d\}, \{a, c, e\}, \{a, d, e\}, \{b, c, d\}, \{b, c, e\}, \}$



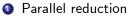


$$R(G) = (1 - p_c) R(G - c) + p_c R(G/c)$$



- < ≣ >

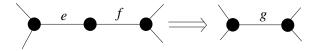
Reductions





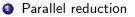
$$p_g = p_e + p_f - p_e p_f$$

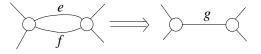
2 Degree-2-reduction



3 ×

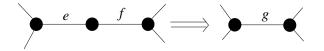
Reductions





$$p_g = p_e + p_f - p_e p_f$$

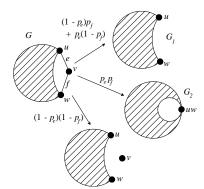
② Degree-2-reduction



$$\omega = p_e + p_f - p_e p_f, \qquad p_g = \frac{p_e p_f}{p_e + p_f - p_e p_f}. \qquad R(G) = \omega R(G')$$

3 ×

Reductions



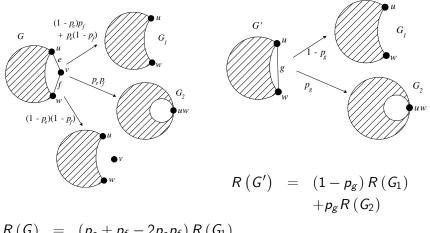
$$R(G) = (p_e + p_f - 2p_e p_f) R(G_1) + p_e p_f R(G_2)$$

Peter Tittmann (Hochschule Mittweida)

▶ ৰ ≣ ▶ ≣ ৩৭০ 2007-05-30 11 / 64

< □ > < ---->

Reductions



$$R(G) = (p_e + p_f - 2p_e p_f) R(G_1) + p_e p_f R(G_2)$$

Peter Tittmann (Hochschule Mittweida)

2007-05-30 11 / 64

- < ≣ ≻ - <

< A

Reductions

Reduction principle

$$R(G) = \omega R(G')$$

$$R(G) = (p_e + p_f - 2p_e p_f) R(G_1) + p_e p_f R(G_2)$$

$$R(G') = (1 - p_g) R(G_1) + p_g R(G_2)$$

∃ ▶ ∢

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Reductions

Reduction principle

$$R(G) = \omega R(G')$$

$$R(G) = (p_e + p_f - 2p_e p_f) R(G_1) + p_e p_f R(G_2)$$

$$R(G') = (1 - p_g) R(G_1) + p_g R(G_2)$$

Method of coefficient comparison

$$p_e + p_f - 2p_e p_f = \omega (1 - p_g)$$
$$p_e p_f = \omega p_g$$

Image: Image:

Reductions

Reduction principle

$$R(G) = \omega R(G')$$

$$R(G) = (p_e + p_f - 2p_e p_f) R(G_1) + p_e p_f R(G_2)$$

$$R(G') = (1 - p_g) R(G_1) + p_g R(G_2)$$

Method of coefficient comparison

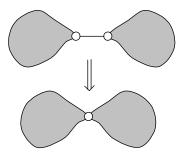
$$p_e + p_f - 2p_e p_f = \omega (1 - p_g)$$
$$p_e p_f = \omega p_g$$

Solution (reduction parameter)

$$\omega = p_e + p_f - p_e p_f$$
$$p_g = \frac{p_e p_f}{p_e + p_f - p_e p_f}$$

Reductions

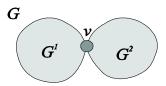
Bridge reduction



 $R(G) = p_e R(G')$

Vertex Separators

Cut vertex - articulation

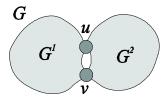


$$\begin{array}{rcl} G^1 \cup G^2 &=& G \\ G^1 \cap G^2 &=& (\{v\}, \emptyset) \end{array}$$

$$R(G) = R(G^1) R(G^2)$$

Vertex Separators

Separating vertex pair



$$G^{1} \cup G^{2} = G$$

$$G^{1} \cap G^{2} = (\{u, v\}, \emptyset)$$

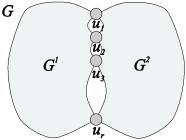
 $R(G) = R(G^{1}) R(G^{2}_{uv}) + R(G^{1}_{uv}) R(G^{2}) - R(G^{1}) R(G^{2})$

- < A

Vertex Separators

 $\begin{array}{l} U \\ \mathbb{P}(U) \\ P(G^1, \pi) \\ G^2_{\pi} \end{array}$

separating vertex set partition lattice of U probability that G^1 induces π obtained from G^2 merging the blocks of π



$$R(G) = \sum_{\pi \in \mathbb{P}(U)} P(G^1, \pi) R(G_{\pi}^2)$$

Reliability polynomials

Definition

The reliability polynomial R(G, p) is the probability that the undirected graph G = (V, E) is connected, assuming all edges of G fail independently with probability 1 - p.

Reliability polynomials

Definition

The reliability polynomial R(G, p) is the probability that the undirected graph G = (V, E) is connected, assuming all edges of G fail independently with probability 1 - p.

$$R(G, p) = \sum_{i=n-1}^{m} a_i p^i$$

= $\sum_{i=n-1}^{m} n_i p^i (1-p)^{m-i}$
= $1 - \sum_{i=\lambda}^{m} c_i p^{m-i} (1-p)^i$

 c_i ... number of cut sets of cardinality i

F

 n_i ... number of spanning subgraphs of G

Reliability polynomials Recursive Definition

$$R(G,p) = \begin{cases} p^{n-1}, \text{ if } G \text{ is a tree with } n \text{ vertices,} \\ 0, \text{ if } G \text{ is disconnected,} \\ pR(G/e) + (1-p)R(G-e) \text{ , else.} \end{cases}$$

メロト メロト メヨト メ

Reliability polynomials Recursive Definition

$$R(G,p) = \begin{cases} p^{n-1}, \text{ if } G \text{ is a tree with } n \text{ vertices,} \\ 0, \text{ if } G \text{ is disconnected,} \\ pR(G/e) + (1-p)R(G-e) \text{ , else.} \end{cases}$$

Fact

This definition does not require any meaning of the variable p.

Image: Image:

< ∃ > <

Properties

• If G is connected then

$$R(G,0) = 0, R(G,1) = 1$$

and

$$p^{m} \leq R(G, p) \leq 1 - (1 - p)^{m}$$
.

- < ≣ ≻ - <

Properties

 \bigcirc If G is connected then

$$R(G, 0) = 0, R(G, 1) = 1$$

and

$$p^m \leq R(G,p) \leq 1-(1-p)^m$$
.

Ø Monotonicity:

 $p_1 < p_2 \Rightarrow R(G, p_1) < R(G, p_2)$

▲ 凄 ▶ ▲

Image: Image:

Properties

①If G is connected then

$$R(G, 0) = 0, R(G, 1) = 1$$

and

$$p^m \leq R(G,p) \leq 1-(1-p)^m$$
.

Onotonicity:

$$p_1 < p_2 \Rightarrow R(G, p_1) < R(G, p_2)$$

If G is a graph with at least three vertices then

$$\left.\frac{dR\left(G,p\right)}{dp}\right|_{p=0}=0.$$

Properties

①If G is connected then

$$R(G, 0) = 0, R(G, 1) = 1$$

and

$$p^m \leq R(G,p) \leq 1-(1-p)^m$$
.

Onotonicity:

$$p_1 < p_2 \Rightarrow R(G, p_1) < R(G, p_2)$$

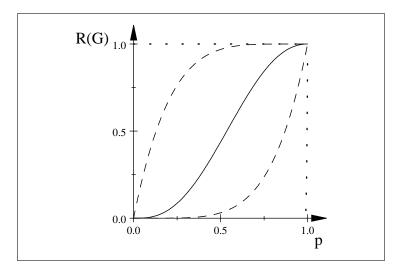
If G is a graph with at least three vertices then

$$\frac{dR\left(G,p\right)}{dp}\bigg|_{p=0}=0.$$

If G is biconnected then

$$\left.\frac{dR\left(G,p\right)}{dp}\right|_{p=1}=0.$$

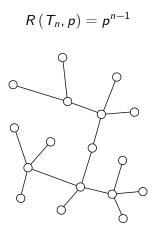
Reliability Function



Peter Tittmann (Hochschule Mittweida)

2007-05-30 20 / 64

Trees



-

Cycles

$$R(C_n, p) = np^{n-1} - (n-1)p^n$$

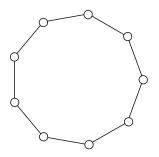
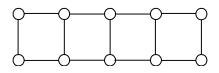


Image: A matrix

-∢ ∃ ▶

Ladder

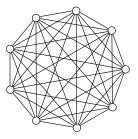


$$R(L_n, p) = \frac{p^{2n-1}}{2^n \alpha} \left[(4 - 3p + \alpha)^n - (4 - 3p - \alpha)^n \right]$$

with $\alpha = \sqrt{12 - 20p + 9p^2}$

Special Graphs

Complete graphs



• Recurrence equation $r_n := R(K_n, q)$, q := 1 - p

$$r_n = 1 - \sum_{k=1}^{n-1} {n-1 \choose k-1} q^{k(n-k)} r_k$$

$$r_1 = 1$$

▲ 恵 ▶ →

Image: Image:

• Explicit representation

$$r_n = \sum_{\lambda \vdash n} (-1)^{|\lambda|+1} \binom{n}{\lambda} \binom{|\lambda|}{k} \frac{1}{|\lambda|} q^{a_2(\lambda)}$$

with

$$\lambda = (\lambda_1, \dots, \lambda_k) = \left(1^{k_1} 2^{k_2} \cdots n^{k_n}\right)$$

and

$$a_2(\lambda_1,...,\lambda_s) = rac{1}{2}\left(n^2 - \sum_{i=1}^s \lambda_i^2\right)$$

э

Image: A matrix

- < ≣ ≻ - <

• Explicit representation

$$r_n = \sum_{\lambda \vdash n} (-1)^{|\lambda|+1} \binom{n}{\lambda} \binom{|\lambda|}{k} \frac{1}{|\lambda|} q^{a_2(\lambda)}$$

with

$$\lambda = (\lambda_1, \dots, \lambda_k) = \left(1^{k_1} 2^{k_2} \cdots n^{k_n}\right)$$

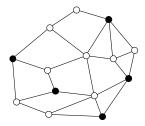
and

$$\mathbf{a}_{2}\left(\lambda_{1},...,\lambda_{s}
ight)=rac{1}{2}\left(\mathbf{n}^{2}-\sum_{i=1}^{s}\lambda_{i}^{2}
ight)$$

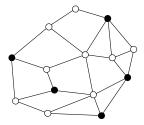
• Exponential generating function

$$r_n = q^{\frac{n^2}{2}} \left[\frac{z^n}{n!} \right] \ln \left(\sum_{n \ge 0} q^{-\frac{n^2}{2}} \frac{z^n}{n!} \right)$$

The K-terminal reliability

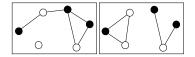


The K-terminal reliability



Definition

G is K-connected if all vertices of $K \subseteq V$ belong to one component of G.



Peter Tittmann (Hochschule Mittweida)

Network Reliability

$$R(G, K) = \begin{cases} 0 \text{ if } G \text{ is not } K\text{-connected,} \\ 1 \text{ if } G = (\{v\}, \emptyset), v \in K, \\ p_e R(G/e, K') + (1 - p_e) R(G - e, K) \text{ else,} \end{cases}$$

where $K' = (K \setminus \{u, v\}) \cup X$, $e = \{u, v\}$, w is the vertex obtained merging vertices u and v and

$$X = \begin{cases} \{w\}, \text{ if } K \cap \{u, v\} \neq \emptyset \\ \emptyset, \text{ else.} \end{cases}$$

.

Complete state enumeration:

$$R(G, K) = \sum_{F \subseteq E} \prod_{e \in F} p_e \prod_{e \in E \setminus F} (1-p) \xi(G[F], K)$$

with

$$\xi(G[F], K) = \begin{cases} 1, \text{ if } G[F] \text{ is } K \text{-connected,} \\ 0, \text{ else.} \end{cases}$$

For $K = \{s, t\}$, the probability R(G, K) is called *two-terminal reliability* (or *st*-reliability).

• Let $\mathbf{p} = (p_1, ..., p_m)$ be the vector of edge availabilities of G. Then

$$\mathbf{p} \leq \mathbf{p}' \; \Rightarrow \; (G, K, \mathbf{p}) \leq R(G, K, \mathbf{p}') \, .$$

Image: Image:

→ ∃ >

• Let $\mathbf{p} = (p_1, ..., p_m)$ be the vector of edge availabilities of G. Then $\mathbf{p} \leq \mathbf{p}' \Rightarrow (G, K, \mathbf{p}) \leq R(G, K, \mathbf{p}')$.

Ø Monotonicity with respect to terminal vertex sets:

 $K \subseteq L \Rightarrow R(G, K) \geq R(G, L)$

• Let $\mathbf{p} = (p_1, ..., p_m)$ be the vector of edge availabilities of G. Then $\mathbf{p} \le \mathbf{p}' \implies (G, K, \mathbf{p}) \le R(G, K, \mathbf{p}')$.

Ø Monotonicity with respect to terminal vertex sets:

$$K \subseteq L \Rightarrow R(G, K) \geq R(G, L)$$

• If $K \cap L \neq \emptyset$ then

• Let $\mathbf{p} = (p_1, ..., p_m)$ be the vector of edge availabilities of G. Then $\mathbf{p} \leq \mathbf{p}' \Rightarrow (G, K, \mathbf{p}) \leq R(G, K, \mathbf{p}')$.

Ø Monotonicity with respect to terminal vertex sets:

$$K \subseteq L \Rightarrow R(G, K) \geq R(G, L)$$

Solution If $K \cap L \neq \emptyset$ then $R(G, K \cup L) \ge R(G, K) + R(G, L) - 1$,

• Let $\mathbf{p} = (p_1, ..., p_m)$ be the vector of edge availabilities of G. Then $\mathbf{p} \le \mathbf{p}' \Rightarrow (G, K, \mathbf{p}) \le R(G, K, \mathbf{p}')$.

Ø Monotonicity with respect to terminal vertex sets:

$$K \subseteq L \Rightarrow R(G, K) \geq R(G, L)$$

● If $K \cap L \neq \emptyset$ then

● $R(G, K \cup L) \ge R(G, K) + R(G, L) - 1$, ● $R(G, K \cup L) \ge R(G, K) R(G, L)$.

< ∃ > <

• Let $\mathbf{p} = (p_1, ..., p_m)$ be the vector of edge availabilities of G. Then $\mathbf{p} \leq \mathbf{p}' \Rightarrow (G, K, \mathbf{p}) \leq R(G, K, \mathbf{p}')$.

Ø Monotonicity with respect to terminal vertex sets:

$$K \subseteq L \Rightarrow R(G, K) \geq R(G, L)$$

● If $K \cap L \neq \emptyset$ then

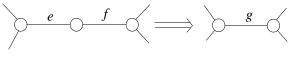
● $R(G, K \cup L) \ge R(G, K) + R(G, L) - 1,$ ● $R(G, K \cup L) \ge R(G, K) R(G, L).$

• The K-terminal reliability of the complete graph K_n :

$$R(K_n, k) = \sum_{j=k}^n \binom{n-k}{j-k} r_j q^{j(n-j)}$$

Reductions

Series reduction



 $p_g = p_e p_f$

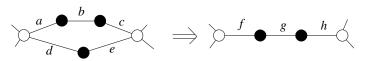
▲ 恵 → → ▲

Image: Image:

Reliability Calculations

Reductions

Polygon-to-chain reductions $R(G) = \omega R(G')$



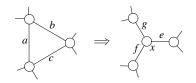
$$\begin{array}{rcl} \alpha & = & ab\,(1-c)\,d\,(1-e)\,,\ \beta = (1-a)\,bc\,(1-d)\,e\\ \gamma & = & a(1-b)c(d+e-2de) + (a+c-2ac)bd(1-e)\\ \delta & = & abcde\,\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\right) \end{array}$$

$$f = \frac{\delta}{\beta + \delta}, \ g = \frac{\delta}{\gamma + \delta}, \ h = \frac{\delta}{\alpha + \delta},$$
$$\omega = \frac{(\alpha + \delta) (\beta + \delta) (\gamma + \delta)}{\delta^{2}}$$

Reliability Calculations

Reductions

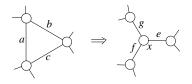
Delta-Star reduction



Reliability Calculations

Reductions

Delta-Star reduction



$$\alpha = a + b + c - ab - ac - cc + abc$$

$$\beta = a + bc - abc$$

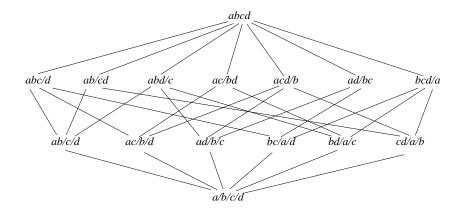
$$\gamma = b + ac - abc$$

$$\delta = c + ab - abc$$

$$e = \frac{\alpha}{\beta}, \ f = \frac{\alpha}{\gamma}, \ g = \frac{\alpha}{\delta}, \ x = \frac{\beta\gamma\delta}{\alpha^2}$$

Partitions of Vertex Sets Partition Lattice

 $M = \{a, b, c, d\}, \mathbb{P}(M) \dots$ set of all partitions of M $\pi < \sigma$ if and only if π is a *refinement* of σ



< 3 > < 3 >

Partitions of Vertex Sets

Incidence Algebra

Möbius function

$$\mu(\pi, \sigma) = (-1)^{|\pi| - |\sigma|} \prod_{i=1}^{|\sigma|} (p_i - 1)!$$

Supremum function

$$a(x,y) = [x \lor y = \hat{1}]$$

Inverse

$$\mathbf{a}^{-1}\left(\mathbf{x},\mathbf{z}\right) = \sum_{\mathbf{y}} \frac{\mu\left(\mathbf{y},\mathbf{z}\right)\mu\left(\mathbf{y},\mathbf{x}\right)}{\mu\left(\mathbf{y},\mathbf{\hat{1}}\right)}$$

Partitions of Vertex Sets

Network Reliability

Theorem

$$R(G, K) = \sum_{\sigma \ge \pi(K)} \sum_{\tau \in \mathbb{P}(V)} a^{-1}(\sigma, \tau) R(G_{\tau})$$

Peter Tittmann (Hochschule Mittweida)

< ∃ > <

Partitions of Vertex Sets

Network Reliability

Theorem

$$R(G, K) = \sum_{\sigma \ge \pi(K)} \sum_{\tau \in \mathbb{P}(V)} a^{-1}(\sigma, \tau) R(G_{\tau})$$

Theorem

$$\left| R\left(G
ight) = \sum_{\sigma \in \mathbb{P}(V)} \left(-1
ight)^{\left| \sigma
ight| +1} \left(\left| \sigma
ight| -1
ight)! q^{\left| E\left(G,\sigma
ight)
ight|}
ight.$$

Tittmann, P.: Partitions and network reliability, Discrete Applied Mathematics 95 (1999), 445-453

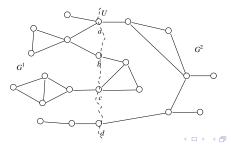
Definition

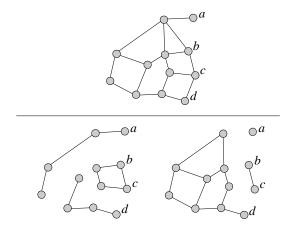
Let $G^1 = (V^1, E^1)$ and $G^2 = (V^2, E^2)$ be two subgraphs of G = (V, E) such that

$$V^1 \cup V^2 = V, V^1 \cap V^2 = U,$$

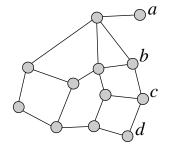
 $E^1 \cup E^2 = E, E^1 \cap E^2 = \emptyset.$

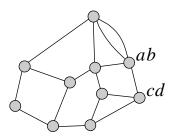
Then U is called a *separating vertex set* of G.





induced partition: $\pi = a/bc/d$





・ロト ・ 日 ト ・ 日 ト ・

 $G \rightarrow G_{ab/cd}$

æ 2007-05-30 38 / 64

э

Separating Vertex Sets The Splitting Formula

$$R(G) = \sum_{\pi \in \mathbb{P}(U)} P_{\pi}^{1} R(G_{\pi}^{2})$$

Number of terms:

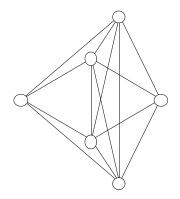
$$B(u) \sim rac{1}{\sqrt{u}} e^{u(r+1/r-1)-1}$$
 with $r e^r = u$

Exponential generating function:
$$e^{e^z-1} = \sum_{n \ge 0} B(n) \frac{z^n}{n!}$$

Image: A matrix

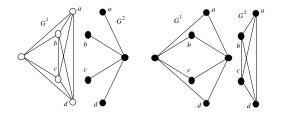
- **4 ∃ ≻** 4 -

Symmetric graphs



・ロト ・日下 ・ 日下

Symmetric graphs



$$R(G) = \sum_{\lambda \vdash u} \binom{u}{\lambda} \binom{|\lambda|}{k} \frac{1}{|\lambda|} P_{\lambda}^{1} R(G_{\lambda}^{2})$$

 ▶ < ≣ ▶ ≡ </th>
 > ○ < ○</th>

 2007-05-30
 41 / 64

Symmetric graphs

Number of terms:

n	1	2	3	4	5	6	7	8	9
<i>B</i> (<i>n</i>)	1	2	5	15	52	203	877	4140	21147
p(n)	1	2	3	5	7	11	15	22	30
<i>p</i> _n	1	2	5	14	42	132	429	1430	4862
t _n	1	2	4	10	26	76	232	750	2494

< ∃ > <

A form of the splitting formula that requires only all-terminal reliability calculations for G^1 and G^2 :

$$R(G) = \sum_{\pi \in \mathbb{P}(U)} \sum_{\sigma \in \mathbb{P}(U)} R(G_{\pi}^{1}) a^{-1}(\pi, \sigma) R(G_{\sigma}^{2})$$

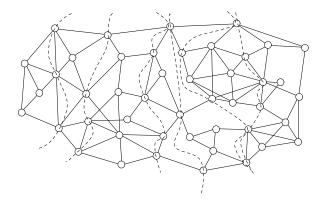
Special cases $|U| = 1 : R(G) = R(G^1) R(G^2)$ $|U| = 2 : R(G) = R(G^1) R(G^2_{uv}) + R(G^1_{uv}) R(G^2) - R(G^1) R(G^2)$ |U| = 3 :

$$A_{3}^{-1} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 & 2 \\ 0 & -1 & 1 & 1 & -1 \\ 0 & 1 & -1 & 1 & -1 \\ 0 & 1 & 1 & -1 & -1 \\ 2 & -1 & -1 & -1 & 1 \end{pmatrix}$$

abc, ab/c, ac/b, bc/a, a/b/c

→ ∃ →

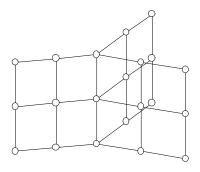
Separating Vertex Sets Multiple splitting



$$R(G_0 * G_1 * \dots * G_n) = \mathbf{q}_0^T A_1^{-1} Q_1 A_2^{-1} Q_2 \cdots A_{n-1}^{-1} Q_{n-1} A_n^{-1} \mathbf{q}_n$$

イロト イヨト イヨト イ

Separating Vertex Sets Multiple splitting



Gorlov, V.; Tittmann, P.: *A unified approach to the reliability of recurrent structures*, in Ellart von Collani et al. (editors): Advances in stochastic models for reliability, quality and safety, Birkhäuser, Boston, 1998

A tree decomposition of a graph G = (V, E) is a pair (T, ϕ) with a tree T = (W, F) and a map $\phi : W \to 2^V$ which assigns a vertex subset of G to each vertex of T such that

③ Let *v* ∈ *W* be on the path between *u* and *w* in *T*. Then we have $\phi(u) \cap \phi(w) \subseteq \phi(v)$.

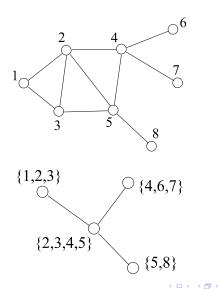
The width of a tree decomposition is

$$\max \{\phi \left(w
ight) : w \in W \} - 1$$
 .

The *treewidth* tw(G) of G is the minimum width of a tree decomposition of G.

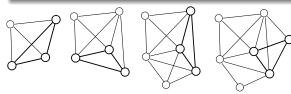
Tree decompositions

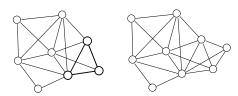
Example



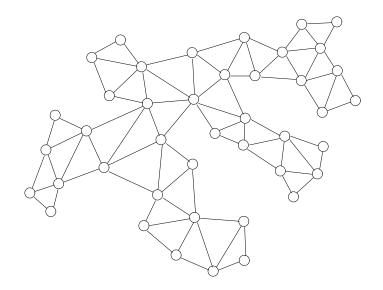
→ Ξ →

A graph G = (V, E) is a k-tree if it is a complete graph with k + 1 vertices or if G contains a vertex $v \in V$ whose neighborhood induces a k-clique of G and G - v is again a k-tree. A partial k-tree is a subgraph of a k-tree.





Partial k-trees



<ロ> (日) (日) (日) (日) (日)

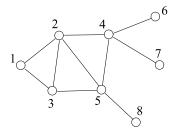
A path decomposition is a sequence

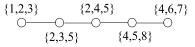
$$\mathcal{X} = (X_1, ..., X_r)$$

of vertex subsets of G such that the following conditions are satisfied

A canonical path decomposition satisfies in addition:

- 4. All subsets of the sequence \mathcal{X} contain at most pw(G) + 1 vertices.
- 5. $|X_{i+1} X_i| = 1$ for i = 1, ..., r 1.



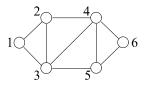


 $\left\{1\right\}, \left\{1,2\right\}, \left\{1,2,3\right\}, \left\{2,3\right\}, \left\{2,3,5\right\}, \left\{2,5\right\}, \left\{2,4,5\right\}, \left\{4,5\right\}, \\ \left\{4,5,8\right\}, \left\{4,5\right\}, \left\{4\right\}, \left\{4,6\right\}, \left\{4\right\}, \left\{4,7\right\}, \left\{7\right\}$

1, 2, 3, -1, 5, -3, 4, -2, 8, -8, -5, 6, -6, 7, -7

A composition order of G = (V, E) is a sequence $s = (s_1, ..., s_r)$ of vertices and edges such that

- The removal of all edges of s yields a canonical path decomposition of G.
- Each edge is exactly once in s.
- If $s_k = (u, v) \in E$ then there are indices *i*, *j*, *p*, *q* with *i*, *j* < *k* and *p*, *q* > *k* such that $u = s_i = s_p$ and $v = s_j = s_q$.



Composition order:

$$(1, 2, \{1, 2\}, 3, \{1, 3\}, -1, \{2, 3\}, 4, \{2, 4\}, -2, \{3, 4\}, 5, \{3, 5\}, -3, \{4, 5\}, 6, \{4, 6\}, -4, \{5, 6\}, -5, -6).$$

Assigned path decomposition:

$$(\emptyset, \{1\}, \{1,2\}, \{1,2,3\}, \{2,3\}, \{2,3,4\}, \{3,4\}, \{3,4,5\}, \{4,5\}, \{4,5,6\}, \{5,6\}, \{6\}, \emptyset)$$

Composition Algorithms

State = (index, value) Index: Partition of the set of active vertices Value: Polynomial

Transformation of states

1. Vertex activation:

 $(\pi, P_{\pi}) \mapsto (\pi/\{v\}, P_{\pi})$

- 2. Vertex deactivation:
- If $\{v\}$ is a singleton of π then $(\pi, P_{\pi}) \mapsto \emptyset$. Else:

$$(\pi, P_{\pi}) \mapsto \left(\pi - \mathbf{v}, \sum_{\substack{\mathbf{v} \in \mathbf{Y} \in \pi \\ |\mathbf{Y}| > 1}} P_{\pi} \right)$$

3. The insertion of an edge *e* generates two successor states:

(I)
$$(\pi, P_{\pi}) \mapsto (\pi, (1-p) P_{\pi})$$

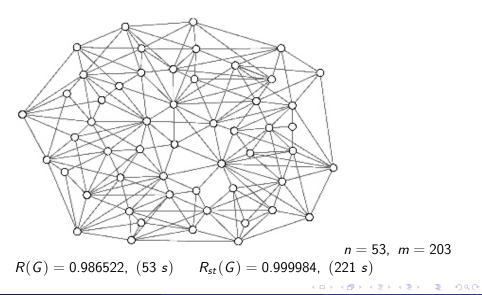
(II) $(\pi, P_{\pi}) \mapsto (\pi \lor e, pP_{\pi} + P_{\pi \lor e})$

Example

s _i	X_{i+1}	Z_{i+1}
1	{1}	$\{(1,1)\}$
2	{1,2}	$\{(1/2,1)\}$
{1,2}	{1,2}	$\{(1/2,1-p)$, $(12,p)\}$
3	{1, 2, 3}	$\{(1/2/3, 1-p), (12/3, p)\}$
{1,3}	{1, 2, 3}	$\{ig(1/2/3,1-2p+p^2ig)$,
		$(12/3, p-p^2)$,
		$\left(13/2, p-p^2 ight)$, 123, $p^2\}$
-1	{2,3}	$\{(2/3, 2p - 2p^2), (23, p^2)\}$
{2,3}	{2,3}	$\{(2/3, 2p - 4p^2 + 2p^3),$
		$(23, 3p^2 - 2p^3)$

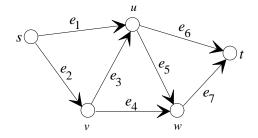
・ロト ・ 日 ト ・ 日 ト ・

Numeric Example



Algorithmic Principles

André Pönitz: Über eine Methode zur Konstruktion von Algorithmen für die Berechnung von Invarianten in endlichen ungerichteten Hypergraphen, (About a generation method for algorithms for the calculation of invariants of finite graphs and hypergraphs), PhDThesis, Technische Universität Freiberg, 2004.



Algebraic Methods

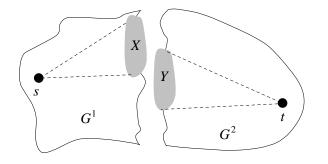
$$R_{st}(G) = \bigoplus_{W \in \mathcal{W}} \bigotimes_{e \in W} p_e$$

Iteration procedure

$$P = \begin{pmatrix} 0 & p_1 & p_2 & 0 & 0 \\ 0 & 0 & 0 & p_5 & p_6 \\ 0 & p_3 & 0 & p_4 & 0 \\ 0 & 0 & 0 & 0 & p_7 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \ s_i = \begin{cases} 1, \text{ if } i = s \\ 0 \text{ else} \end{cases}$$

< □ > < ---->

3 ×



 $R_{st}(G) = \sum_{\emptyset \subset X \subseteq U} \sum_{Y \subseteq X} (-1)^{|X| - |Y| + 1} R_{s, U \setminus Y}(G^1_{U \setminus Y}) R_{X, t}(G^2_X)$