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Models for Communication Networks

Communication network Mathematical model
Network topology (un-) directed graph
Server
Switch Vertex
Base station
Fiber optical transmission line
Transmission line (copper) Edge (arc)
Wireless channel
Server failure probability Weights of

vertices
Link availability
Line length (costs) Edge weights
Transfer rate
User terminal Terminal vertex
PoP
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Problems

What is the probability that a certain vertex is reachable from another
given vertex?

What is the probability of network overload?

Which mean transmission rate can be realized?

Where are the weak points of the network (e.g. w.r.t. reliability or
security)?

Is a spread of failure within the network possible? How?

What is the mean (average) packet delay?

What is the probability of packet loss?

How is tra¢ c load distributed over the network?
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Constraints

Network technology, used protocol (IP, ATM, SS7, GSM)

Routing, redundancy properties

Service under consideration

Supply of data

Type of failure
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Mathematical Model
Network Structure �Graphs

Directed or undirected graph G = (V ,E )

pe ... availability of edge e 2 E
All edges are assumed to fail independently.
W set of paths
C set of cuts
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Reliability Measures

All-terminal reliability (connectedness probability)

R(G ) = P (fG is connectedg)

K -terminal probability R(G ,K ), jK j � 2
The residual connectedness probability: G is considered operating if
and only if at least one vertex is in operating state and all operating
vertices of G belong to one component.

Probability of a given data transfer between two vertices.

Resilience: Expectation for the number of vertex pairs that are
connected by operating paths.

Importance measures
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All-Terminal Reliability
Example

Sets of minimum paths � spanning trees
W = ffa, b, dg , fa, b, eg , fa, c , dg , fa, c , eg , fa, d , eg , fb, c , dg , fb, c , eg , fb, d , egg
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All-Terminal Reliability
Example

R (G ) = papbpd + papbpe + papcpd + papcpe + papdpe + pbpcpd
+pbpcpe + pbpdpe � 2papbpcpd � 2papbpcpe � 3papbpdpe
�2papcpdpe � 2pbpcpdpe + 4papbpcpdpe
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Decomposition

R (G ) = (1� pc )R (G � c) + pcR (G/c)
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All-Terminal Reliability
Reductions

1 Parallel reduction

e

f

g

pg = pe + pf � pepf
2 Degree-2-reduction

e f g

ω = pe + pf � pepf , pg =
pepf

pe + pf � pepf
. R (G ) = ωR

�
G 0
�
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All-Terminal Reliability
Reductions

u

v

w

w

w

u

u

uw

e

f

v

p pe f

(1 ­ p )(1 ­ p )e f

(1 ­ p )pe f
+ p (1 ­ p )e f G

1

G2

G

R (G ) = (pe + pf � 2pepf )R (G1)
+pepf R (G2)

u

w

w

u

uw

g

GG'

G

1

2

1 ­ pg

pg

R
�
G 0
�
= (1� pg )R (G1)

+pgR (G2)
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All-Terminal Reliability
Reductions

Reduction principle

R (G ) = ωR
�
G 0
�

R (G ) = (pe + pf � 2pepf )R (G1) + pepf R (G2)
R
�
G 0
�
= (1� pg )R (G1) + pgR (G2)

Method of coe¢ cient comparison

pe + pf � 2pepf = ω (1� pg )
pepf = ωpg

Solution (reduction parameter)

ω = pe + pf � pepf
pg =

pepf
pe + pf � pepf
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All-Terminal Reliability
Reductions

Bridge reduction

R(G ) = peR
�
G 0
�
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All-Terminal Reliability
Vertex Separators

Cut vertex �articulation

G 1 [ G 2 = G

G 1 \ G 2 = (fvg ,∅)

R(G ) = R
�
G 1
�
R
�
G 2
�
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All-Terminal Reliability
Vertex Separators

Separating vertex pair

G 1 [ G 2 = G

G 1 \ G 2 = (fu, vg ,∅)

R(G ) = R
�
G 1
�
R
�
G 2uv
�
+ R

�
G 1uv
�
R
�
G 2
�
� R

�
G 1
�
R
�
G 2
�
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All-Terminal Reliability
Vertex Separators

U separating vertex set
P (U) partition lattice of U
P
�
G 1,π

�
probability that G 1 induces π

G 2π obtained from G 2 merging the blocks of π

R(G ) = ∑
π2P(U )

P
�
G 1,π

�
R
�
G 2π
�
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Reliability polynomials

De�nition
The reliability polynomial R(G , p) is the probability that the undirected
graph G = (V ,E ) is connected, assuming all edges of G fail
independently with probability 1� p.

R (G , p) =
m

∑
i=n�1

aipi

=
m

∑
i=n�1

nipi (1� p)m�i

= 1�
m

∑
i=λ

cipm�i (1� p)i

ci ... number of cut sets of cardinality i
ni ... number of spanning subgraphs of G

Peter Tittmann (Hochschule Mittweida) Network Reliability 2007-05-30 17 / 64



Reliability polynomials

De�nition
The reliability polynomial R(G , p) is the probability that the undirected
graph G = (V ,E ) is connected, assuming all edges of G fail
independently with probability 1� p.

R (G , p) =
m

∑
i=n�1

aipi

=
m

∑
i=n�1

nipi (1� p)m�i

= 1�
m

∑
i=λ

cipm�i (1� p)i

ci ... number of cut sets of cardinality i
ni ... number of spanning subgraphs of G

Peter Tittmann (Hochschule Mittweida) Network Reliability 2007-05-30 17 / 64



Reliability polynomials
Recursive De�nition

R (G , p) =

8<:
pn�1, if G is a tree with n vertices,
0, if G is disconnected,
pR (G/e) + (1� p)R (G � e) , else.

Fact
This de�nition does not require any meaning of the variable p.
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Reliability polynomials
Properties

1 If G is connected then

R (G , 0) = 0, R (G , 1) = 1

and
pm � R (G , p) � 1� (1� p)m .

2 Monotonicity:

p1 < p2 ) R (G , p1) < R (G , p2)

3 If G is a graph with at least three vertices then

dR (G , p)
dp

����
p=0

= 0.

4 If G is biconnected then
dR (G , p)
dp

����
p=1

= 0.
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Reliability polynomials
Reliability Function

0.0 0.5 1.0
0.0

0.5

1.0

p

R(G)
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Reliability polynomials
Special Graphs

Trees

R (Tn, p) = pn�1
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Reliability polynomials
Special Graphs

Cycles

R (Cn, p) = npn�1 � (n� 1) pn
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Reliability polynomials
Special Graphs

Ladder

R (Ln, p) =
p2n�1

2nα
[(4� 3p + α)n � (4� 3p � α)n ]

with α =
p
12� 20p + 9p2
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Reliability polynomials
Special Graphs

Complete graphs

Recurrence equation rn := R (Kn, q) , q := 1� p

rn = 1�
n�1
∑
k=1

�
n� 1
k � 1

�
qk (n�k )rk

r1 = 1
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Reliability polynomials
Special Graphs

Explicit representation

rn = ∑
λ`n
(�1)jλj+1

�
n
λ

��
jλj
k

�
1
jλjq

a2(λ)

with
λ = (λ1, ..., λk ) =

�
1k12k2 � � � nkn

�
and

a2 (λ1, ...,λs ) =
1
2

 
n2 �

s

∑
i=1

λ2i

!

Exponential generating function

rn = q
n2
2

�
zn

n!

�
ln

 
∑
n�0

q�
n2
2
zn

n!

!
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The K-terminal reliability

De�nition
G is K-connected if all vertices of K � V belong to one component of G .
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The K-terminal reliability

R (G ,K ) =

8<:
0 if G is not K -connected,
1 if G = (fvg ,∅) , v 2 K ,
peR (G/e,K 0) + (1� pe )R (G � e,K ) else,

where K 0 = (K n fu, vg) [ X , e = fu, vg, w is the vertex obtained
merging vertices u and v and

X =
�
fwg, if K \ fu, vg 6= ∅
∅, else.

.
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The K-terminal reliability

Complete state enumeration:

R (G ,K ) = ∑
F�E

∏
e2F

pe ∏
e2E nF

(1� p) ξ (G [F ] ,K )

with

ξ (G [F ] ,K ) =
�
1, if G [F ] is K-connected,
0, else.

.

For K = fs, tg , the probability R(G ,K ) is called two-terminal reliability
(or st-reliability).
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The K-terminal reliability
Properties

1 Let p = (p1, ..., pm) be the vector of edge availabilities of G . Then

p � p0 ) (G ,K ,p) � R
�
G ,K ,p0

�
.

2 Monotonicity with respect to terminal vertex sets:

K � L ) R (G ,K ) � R (G , L)

3 If K \ L 6= ∅ then

1 R (G ,K [ L) � R (G ,K ) + R (G , L)� 1,
2 R (G ,K [ L) � R (G ,K )R (G , L) .

4 The K-terminal reliability of the complete graph Kn:

R (Kn, k) =
n

∑
j=k

�
n� k
j � k

�
rjqj(n�j)
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The K-terminal reliability
Properties
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Reliability Calculations
Reductions

Series reduction

e f g

pg = pepf
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Reliability Calculations
Reductions

Polygon-to�chain reductions R (G ) = ωR (G 0)

a
b

c

d e

f g h

α = ab (1� c) d (1� e) , β = (1� a) bc (1� d) e
γ = a(1� b)c(d + e � 2de) + (a+ c � 2ac)bd(1� e)

δ = abcde
�
1+

1
a
+
1
b
+
1
c
+
1
d
+
1
e

�

f =
δ

β+ δ
, g =

δ

γ+ δ
, h =

δ

α+ δ
,

ω =
(α+ δ) (β+ δ) (γ+ δ)

δ2
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Reliability Calculations
Reductions

Delta-Star reduction

a
b

c

e
f

g

x

α = a+ b+ c � ab� ac � cc + abc
β = a+ bc � abc
γ = b+ ac � abc
δ = c + ab� abc

e =
α

β
, f =

α

γ
, g =

α

δ
, x =

βγδ

α2
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Partitions of Vertex Sets
Partition Lattice

M = fa, b, c , dg , P (M) .. set of all partitions of M
π � σ if and only if π is a re�nement of σ

a/b/c/d

ab/c/d ac/b/d ad/b/c bc/a/d bd/a/c cd/a/b

abc/d ab/cd abd/c ac/bd acd/b ad/bc bcd/a

abcd
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Partitions of Vertex Sets
Incidence Algebra

Möbius function

µ (π, σ) = (�1)jπj�jσj
jσj

∏
i=1
(pi � 1)!

Supremum function
a (x , y) =

�
x _ y = 1̂

�
Inverse

a�1 (x , z) = ∑
y

µ (y , z) µ (y , x)
µ
�
y , 1̂
�
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Partitions of Vertex Sets
Network Reliability

Theorem

R (G ,K ) = ∑
σ�π(K )

∑
τ2P(V )

a�1 (σ, τ)R (Gτ )

Theorem

R (G ) = ∑
σ2P(V )

(�1)jσj+1 (jσj � 1)! qjE (G ,σ)j

Tittmann, P.: Partitions and network reliability, Discrete Applied
Mathematics 95 (1999), 445-453
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Separating Vertex Sets

De�nition

Let G 1 =
�
V 1,E 1

�
and G 2 =

�
V 2,E 2

�
be two subgraphs of G = (V ,E )

such that

V 1 [ V 2 = V , V 1 \ V 2 = U,
E 1 [ E 2 = E , E 1 \ E 2 = ∅.

Then U is called a separating vertex set of G .

G

a

b

c

d

G

1

2

U
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Separating Vertex Sets

a

a a

bb

b

c

c c

dd

d

induced partition: π = a/bc/d
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Separating Vertex Sets

a

b

c

d

ab

cd

G ! Gab/cd
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Separating Vertex Sets
The Splitting Formula

R (G ) = ∑
π2P(U )

P1π R
�
G 2π
�

Number of terms:

B (u) � 1p
u
eu(r+1/r�1)�1 with r er = u

Exponential generating function: ee
z�1 = ∑

n�0
B(n)

zn

n!
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Separating Vertex Sets
Symmetric graphs
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Separating Vertex Sets
Symmetric graphs

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

G G1 2 G1 G2

R (G ) = ∑
λ`u

�
u
λ

��
jλj
k

�
1
jλjP

1
λR
�
G 2λ
�
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Separating Vertex Sets
Symmetric graphs

Number of terms:
n 1 2 3 4 5 6 7 8 9

B (n) 1 2 5 15 52 203 877 4140 21147
p (n) 1 2 3 5 7 11 15 22 30
pn 1 2 5 14 42 132 429 1430 4862
tn 1 2 4 10 26 76 232 750 2494
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Separating Vertex Sets
Symmetric graphs

A form of the splitting formula that requires only all-terminal reliability
calculations for G 1 and G 2:

R (G ) = ∑
π2P(U )

∑
σ2P(U )

R
�
G 1π
�
a�1 (π, σ) R

�
G 2σ
�
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Separating Vertex Sets
Symmetric graphs

Special cases
jU j = 1 : R (G ) = R

�
G 1
�
R
�
G 2
�

jU j = 2 : R (G ) = R
�
G 1
�
R
�
G 2uv
�
+ R

�
G 1uv
�
R
�
G 2
�
� R

�
G 1
�
R
�
G 2
�

jU j = 3 :

A�13 =
1
2

0BBBB@
0 0 0 0 2
0 �1 1 1 �1
0 1 �1 1 �1
0 1 1 �1 �1
2 �1 �1 �1 1

1CCCCA
abc , ab/c , ac/b, bc/a, a/b/c
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Separating Vertex Sets
Multiple splitting

R (G0 � G1 � ... � Gn) = qT0 A�11 Q1A�12 Q2 � � � A�1n�1Qn�1A�1n qn
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Separating Vertex Sets
Multiple splitting

Gorlov, V.; Tittmann, P.: A uni�ed approach to the reliability of
recurrent structures, in Ellart von Collani et al. (editors): Advances in
stochastic models for reliability, quality and safety, Birkhäuser, Boston,
1998
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Tree decompositions

De�nition
A tree decomposition of a graph G = (V ,E ) is a pair (T , φ) with a tree
T = (W ,F ) and a map φ : W ! 2V which assigns a vertex subset of G
to each vertex of T such that

1
S
w2W φ (w) = V .

2 For each edge fu, vg 2 E there exists w in T such that
fu, vg � φ (w).

3 Let v 2 W be on the path between u and w in T . Then we have
φ (u) \ φ (w) � φ (v).
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Tree decompositions

De�nition
The width of a tree decomposition is

maxfφ (w) : w 2 W g � 1 .

The treewidth tw(G ) of G is the minimum width of a tree decomposition
of G .
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Tree decompositions
Example
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Partial k-trees

De�nition
A graph G = (V ,E ) is a k-tree if it is a complete graph with k + 1 vertices
or if G contains a vertex v 2 V whose neighborhood induces a k-clique of
G and G � v is again a k-tree. A partial k-tree is a subgraph of a k-tree.
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Partial k-trees
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Path Decompositions

De�nition
A path decomposition is a sequence

X = (X1, ...,Xr )

of vertex subsets of G such that the following conditions are satis�ed

1

r[
i=1

Xi = V .

2 Each edge of G is contained in at least one of X1, ...,Xr .
3 For all i , j , k with 1 � i < j < k � r the relation Xi \ Xk � Xj is
valid.
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Path Decompositions

De�nition
A canonical path decomposition satis�es in addition:

4. All subsets of the sequence X contain at most pw (G ) + 1 vertices.

5. jXi+1 � Xi j = 1 for i = 1, ..., r � 1.
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Path Decompositions

f1g , f1, 2g , f1, 2, 3g , f2, 3g , f2, 3, 5g , f2, 5g , f2, 4, 5g , f4, 5g ,
f4, 5, 8g , f4, 5g , f4g , f4, 6g , f4g , f4, 7g , f7g

1, 2, 3,�1, 5,�3, 4,�2, 8,�8,�5, 6,�6, 7,�7
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Path Decompositions

De�nition
A composition order of G = (V ,E ) is a sequence s = (s1, ..., sr ) of
vertices and edges such that

1 The removal of all edges of s yields a canonical path decomposition
of G .

2 Each edge is exactly once in s.
3 If sk = (u, v) 2 E then there are indices i , j , p, q with i , j < k and
p, q > k such that u = si = sp and v = sj = sq .
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Path Decompositions

Composition order:

(1, 2, f1, 2g, 3, f1, 3g, �1, f2, 3g, 4, f2, 4g, �2, f3, 4g,
5, f3, 5g, �3, f4, 5g , 6, f4, 6g, �4, f5, 6g, �5, �6).

Assigned path decomposition:

(∅, f1g, f1, 2g, f1, 2, 3g, f2, 3g, f2, 3, 4g, f3, 4g, f3, 4, 5g,
f4, 5g, f4, 5, 6g, f5, 6g, f6g, ∅)
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Path Decompositions
Composition Algorithms

State = (index, value)
Index: Partition of the set of active vertices
Value: Polynomial

Transformation of states
1. Vertex activation:

(π,Pπ) 7! (π/fvg, Pπ)
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Path Decompositions

2. Vertex deactivation:
If fvg is a singleton of π then (π,Pπ) 7! ∅. Else:

(π,Pπ) 7!

0B@π � v , ∑
v2Y 2π
jY j>1

Pπ

1CA
3. The insertion of an edge e generates two successor states:

(I) (π,Pπ) 7! (π, (1� p)Pπ)

(II) (π,Pπ) 7! (π _ e, pPπ + Pπ_e )
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Path Decompositions
Example

si Xi+1 Zi+1
1 f1g f(1, 1)g
2 f1, 2g f(1/2, 1)g
f1, 2g f1, 2g f(1/2, 1� p) , (12, p)g
3 f1, 2, 3g f(1/2/3, 1� p) , (12/3, p)g
f1, 3g f1, 2, 3g f

�
1/2/3, 1� 2p + p2

�
,�

12/3, p � p2
�
,�

13/2, p � p2
�
, 123, p2g

�1 f2, 3g f
�
2/3, 2p � 2p2

�
,
�
23, p2

�
g

f2, 3g f2, 3g f
�
2/3, 2p � 4p2 + 2p3

�
,�

23, 3p2 � 2p3
�
g
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Path Decompositions
Numeric Example

n = 53, m = 203
R(G ) = 0.986522, (53 s) Rst (G ) = 0.999984, (221 s)
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Path Decompositions
Algorithmic Principles

André Pönitz: Über eine Methode zur Konstruktion von Algorithmen
für die Berechnung von Invarianten in endlichen ungerichteten
Hypergraphen, (About a generation method for algorithms for the
calculation of invariants of �nite graphs and hypergraphs), PhDThesis,
Technische Universität Freiberg, 2004.
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Directed Graphs

s
t

e

e e
e

e

e

e

1

2 3

4

5

6

7

u

v w

Algebraic Methods
Rst (G ) =

M
W 2W

O
e2W

pe
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Directed Graphs

Iteration procedure

P =

0BBBB@
0 p1 p2 0 0
0 0 0 p5 p6
0 p3 0 p4 0
0 0 0 0 p7
0 0 0 0 0

1CCCCA , si =
�
1, if i = s
0 else

x0 = (0, ..., 0) , s = (s1, ..., sn)
xn = xn�1 
 P � s for n > 0
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Directed Graphs
Splitting

s

t

X

Y

G
G

1

2

Rst (G ) = ∑
∅�X�U

∑
Y�X

(�1)jX j�jY j+1Rs ,UnY (G 1UnY )RX ,t (G 2X )
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